A near-infrared genetically encoded calcium indicator for in vivo imaging thumbnail

A near-infrared genetically encoded calcium indicator for in vivo imaging

Abstract

While calcium imaging has become a mainstay of modern neuroscience, the spectral properties of current fluorescent calcium indicators limit deep-tissue imaging as well as simultaneous use with other probes. Using two monomeric near-infrared (NIR) fluorescent proteins (FPs), we engineered an NIR Förster resonance energy transfer (FRET)-based genetically encoded calcium indicator (iGECI). iGECI exhibits high levels of brightness and photostability and an increase up to 600% in the fluorescence response to calcium. In dissociated neurons, iGECI detects spontaneous neuronal activity and electrically and optogenetically induced firing. We validated the performance of iGECI up to a depth of almost 400 µm in acute brain slices using one-photon light-sheet imaging. Applying hybrid photoacoustic and fluorescence microscopy, we simultaneously monitored neuronal and hemodynamic activities in the mouse brain through an intact skull, with resolutions of ~3 μm (lateral) and ~25–50 μm (axial). Using two-photon imaging, we detected evoked and spontaneous neuronal activity in the mouse visual cortex, with fluorescence changes of up to 25%. iGECI allows biosensors and optogenetic actuators to be multiplexed without spectral crosstalk.

Data availability

The main data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author on reasonable request. GenBank accession numbers are MT997078 and MT997079 for the iGECI and iGECI-NES (nuclear exclusion sequence) constructs, respectively. Plasmids encoding these constructs will be available on Addgene.

Code availability

Acquisition and analysis code will be available on GitHub or on reasonable request.

References

  1. 1.

    Scanziani, M. & Hausser, M. Electrophysiology in the age of light. Nature 461, 930–939 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  2. 2.

    Leopold, A. V., Shcherbakova, D. M. & Verkhusha, V. V. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. Front. Cell Neurosci. 13, 474 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  3. 3.

    Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  4. 4.

    Debarre, D. et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  5. 5.

    Rueckel, M., Mack-Bucher, J. A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl Acad. Sci. USA 103, 17137–17142 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  6. 6.

    Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  7. 7.

    Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  8. 8.

    Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl Acad. Sci. USA 101, 10554–10559 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  9. 9.

    Palmer, A. E. et al. Ca2+ indicators based on computationally redesigned calmodulin–peptide pairs. Chem. Biol. 13, 521–530 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  10. 10.

    Thestrup, T. et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat. Methods 11, 175–182 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  11. 11.

    Dana, H. et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  12. 12.

    Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  13. 13.

    Shcherbakova, D. M. et al. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat. Commun. 7, 12405 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  14. 14.

    Yu, D. et al. A naturally monomeric infrared fluorescent protein for protein labeling in vivo. Nat. Methods 12, 763–765 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  15. 15.

    Matlashov, M. E. et al. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat. Commun. 11, 239 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  16. 16.

    Qian, Y. et al. A genetically encoded near-infrared fluorescent calcium ion indicator. Nat. Methods 16, 171–174 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  17. 17.

    Shcherbakova, D. M., Cox Cammer, N., Huisman, T. M., Verkhusha, V. V. & Hodgson, L. Direct multiplex imaging and optogenetics of RhoGTPases enabled by near-infrared FRET. Nat. Chem. Biol. 14, 591–600 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  18. 18.

    Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat. Methods 7, 729–732 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  19. 19.

    Bootman, M. D. & Berridge, M. J. Subcellular Ca2+ signals underlying waves and graded responses in HeLa cells. Curr. Biol. 6, 855–865 (1996).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  20. 20.

    Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  21. 21.

    Kumar, M., Kishore, S., Nasenbeny, J., McLean, D. L. & Kozorovitskiy, Y. Integrated one- and two-photon scanned oblique plane illumination (SOPi) microscopy for rapid volumetric imaging. Opt. Express 26, 13027–13041 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  22. 22.

    Kumar, M. & Kozorovitskiy, Y. Tilt-invariant scanned oblique plane illumination microscopy for large-scale volumetric imaging. Opt. Lett. 44, 1706–1709 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  23. 23.

    Kumar, M. & Kozorovitskiy, Y. Tilt (in)variant lateral scan in oblique plane microscopy: a geometrical optics approach. Biomed. Opt. Express 11, 3346–3359 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  24. 24.

    Herman, A. M., Huang, L., Murphey, D. K., Garcia, I. & Arenkiel, B. R. Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2. eLife 3, e01481 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  25. 25.

    Brunker, J., Yao, J., Laufer, J. & Bohndiek, S. E. Photoacoustic imaging using genetically encoded reporters: a review. J. Biomed. Opt. 22, 070901 (2017).

    Article 

    Google Scholar
     

  26. 26.

    Yao, J. et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat. Methods 13, 67–73 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  27. 27.

    Yao, J. et al. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat. Methods 12, 407–410 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  28. 28.

    Zhu, H. et al. Cre-dependent DREADD (Designer Receptors Exclusively Activated by Designer Drugs) mice. Genesis 54, 439–446 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  29. 29.

    Manvich, D. F. et al. The DREADD agonist clozapine N-oxide (CNO) is reverse-metabolized to clozapine and produces clozapine-like interoceptive stimulus effects in rats and mice. Sci. Rep. 8, 3840 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  30. 30.

    Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  31. 31.

    Bouchard, M. B., Chen, B. R., Burgess, S. A. & Hillman, E. M. Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. Opt. Express 17, 15670–15678 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  32. 32.

    Piatkevich, K. D. et al. Near-infrared fluorescent proteins engineered from bacterial phytochromes in neuroimaging. Biophys. J. 113, 2299–2309 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  33. 33.

    Girouard, H. & Iadecola, C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 100, 328–335 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  34. 34.

    Fabiani, M. et al. Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage 85(Pt. 1), 592–607 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  35. 35.

    Liao, L. D. et al. Neurovascular coupling: in vivo optical techniques for functional brain imaging. Biomed. Eng. Online 12, 38 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  36. 36.

    Wang, L. V. & Yao, J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 13, 627–638 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  37. 37.

    Gottschalk, S. et al. Rapid volumetric optoacoustic imaging of neural dynamics across the mouse brain. Nat. Biomed. Eng. 3, 392–401 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  38. 38.

    Piatkevich, K. D., Subach, F. V. & Verkhusha, V. V. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome. Nat. Commun. 4, 2153 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  39. 39.

    Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  40. 40.

    Beaudoin, G. M. 3rd et al. Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat. Protoc. 7, 1741–1754 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  41. 41.

    Jiang, M. & Chen, G. High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat. Protoc. 1, 695–700 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  42. 42.

    Wardill, T. J. et al. A neuron-based screening platform for optimizing genetically-encoded calcium indicators. PLoS ONE 8, e77728 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  43. 43.

    Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  44. 44.

    Kozorovitskiy, Y., Peixoto, R., Wang, W., Saunders, A. & Sabatini, B. L. Neuromodulation of excitatory synaptogenesis in striatal development. eLife 4, e10111 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  45. 45.

    Xiao, L., Priest, M. F., Nasenbeny, J., Lu, T. & Kozorovitskiy, Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95, 368–384 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  46. 46.

    Xiao, L., Priest, M. F. & Kozorovitskiy, Y. Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. eLife 7, e33892 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  47. 47.

    Edelstein, A. D. et al. Advanced methods of microscope control using µManager software. J. Biol. Methods 1, e10 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  48. 48.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     

Download references

Acknowledgements

We thank O. Oliinyk (University of Helsinki, Finland) and A. Kaberniuk (Albert Einstein College of Medicine) for useful suggestions, G. Robertson (Keyence Corporation of America) for technical support and the Biological Imaging Facility of Northwestern University for access to the confocal microscope. This work was supported by grants GM122567, NS103573, NS115581 (all to V.V.V.), EY030705 (to D.M.S.), EB028143, NS111039, EB027304, CA243822 (all to J.Y.) and MH117111 and NS107539 (both to Y.K.) from the National Institutes of Health; 18CSA34080277 from the American Heart Association (to J.Y.); a Beckman Young Investigator Award, a Searle Scholar Award and a Rita Allen Foundation Award (all to Y.K). J.E.C.-J. is a T32 NS041234 fellow.

Author information

Author notes

  1. Anton A. Shemetov

    Present address: Autonomous Therapeutics, Inc., New York, NY, USA

  2. Liming Nie

    Present address: Department of Radiology and Optical Imaging Laboratory, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China

  3. These authors contributed equally: Anton A. Shemetov, Mikhail V. Monakhov.

Affiliations

  1. Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA

    Anton A. Shemetov, Mikhail V. Monakhov, Mikhail E. Matlashov, Daria M. Shcherbakova & Vladislav V. Verkhusha

  2. Department of Physics, University of California, Berkeley, Berkeley, CA, USA

    Qinrong Zhang & Na Ji

  3. Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA

    Jose Ernesto Canton-Josh, Manish Kumar & Yevgenia Kozorovitskiy

  4. Department of Biomedical Engineering, Duke University, Durham, NC, USA

    Maomao Chen & Junjie Yao

  5. Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China

    Maomao Chen & Liming Nie

  6. Department of Anesthesiology, Duke University, Durham, NC, USA

    Xuan Li & Wei Yang

  7. Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA

    Yevgenia Kozorovitskiy

  8. Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland

    Vladislav V. Verkhusha

Contributions

V.V.V., D.M.S. and A.A.S. conceived the project. A.A.S. developed iGECI, and with M.E.M., performed in vitro characterization. M.V.M. characterized iGECI in dissociated neurons. J.E.C.-J., M.K. and Y.K. performed experiments in brain slices using a custom-designed and custom-built SOPi microscope. M.C., L.N. and J.Y. constructed and performed the hybrid photoacoustic and fluorescence microscopy experiments. X.L. and W.Y. developed the transgenic Emx1–hM3Dq mouse model. Q.Z. and N.J. characterized iGECI in vivo with two-photon microscopy. V.V.V., A.A.S., D.M.S., J.Y., Y.K. and N.J. designed the experiments, analyzed the data and wrote the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to
Vladislav V. Verkhusha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shemetov, A.A., Monakhov, M.V., Zhang, Q. et al. A near-infrared genetically encoded calcium indicator for in vivo imaging.
Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0710-1

Download citation

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *