A novel computational architecture for large-scale genomics thumbnail

A novel computational architecture for large-scale genomics

References

  1. 1.

    Aronson, S. J. & Rehm, H. L. Nature 526, 336–342 (2015).

    CAS 
    Article 

    Google Scholar
     

  2. 2.

    Regev, A. et al. Elife 6, e27041 (2017).

    Article 

    Google Scholar
     

  3. 3.

    Theis, T. N. & Philip Wong, H. S. Comput. Sci. Eng. 19, 41–50 (2017).

    Article 

    Google Scholar
     

  4. 4.

    Stephens, Z. D. et al. PLoS Biol. 13, e1002195 (2015).

    Article 

    Google Scholar
     

  5. 5.

    Wagner, A., Regev, A. & Yosef, N. Nat. Biotechnol. 34, 1145–1160 (2016).

    CAS 
    Article 

    Google Scholar
     

  6. 6.

    Nielsen, R. et al. Nature 541, 302–310 (2017).

    CAS 
    Article 

    Google Scholar
     

  7. 7.

    Molnár-Gábor, F., Lueck, R., Yakneen, S. & Korbel, J. O. Genome Med. 9, 58 (2017).

    Article 

    Google Scholar
     

  8. 8.

    Bresniker, K. M., Singhal, S. & Wiliams, R. S. Computer 48, 44–53 (2015).

    Article 

    Google Scholar
     

  9. 9.

    Gen-Z Consortium. Gen-Z core specification 1.0. https://genzconsortium.org/specification/core-specification-1-0/ (retrieved 16 December 2018).

  10. 10.

    Gen-Z Consortium. Gen-Z overview. http://genzconsortium.org/wp-content/uploads/2018/05/Gen-Z-Overview-V1.pdf (2016).

  11. 11.

    Lee, C. T. & Amaro, R. E. Comput. Sci. Eng. 20, 18–25 (2018).

    Article 

    Google Scholar
     

  12. 12.

    Hewlett Packard Enterprise. Fabric-Attached Memory emulation (FAME). https://github.com/FabricAttachedMemory/Emulation (retrieved 5 August 2019).

  13. 13.

    Hewlett Packard Enterprise. New HPE Pointnext capabilities accelerate transition to memory-driven computing. https://www.hpe.com/us/en/newsroom/press-release/2018/06/new-hpe-pointnext-capabilities-accelerate-transition-to-memory-driven-computing.html (2018).

  14. 14.

    Hewlett Packard Enterprise. Fabric-Attached Memory. https://github.com/FabricAttachedMemory (retrieved 5 August 2019).

  15. 15.

    Becker, M. et al. Accelerated genomics data processing using memory-driven computing. 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 1850–1855 (IEEE, 2019).

  16. 16.

    Becker, M. et al. Lect. Notes Comput. Sci. 12151, 328–344 (2020).

    Article 

    Google Scholar
     

  17. 17.

    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Nat. Biotechnol. 34, 525–527 (2016).

    CAS 
    Article 

    Google Scholar
     

Download references

Author information

Author notes

  1. These authors jointly supervised this work: Thomas Ulas and Joachim L. Schultze.

Affiliations

  1. German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics at DZNE and the University of Bonn, Bonn, Germany

    Matthias Becker, Thomas Ulas & Joachim L. Schultze

  2. Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany

    Matthias Becker, Thomas Ulas & Joachim L. Schultze

  3. Hewlett Packard Enterprise, Ratingen, Germany

    Hartmut Schultze

  4. Hewlett Packard Labs, Palo Alto, CA, USA

    Kirk Bresniker & Sharad Singhal

Corresponding author

Correspondence to
Joachim L. Schultze.

Ethics declarations

Competing interests

H.S., K.B. and S.S are employees of Hewlett Packard Enterprise.

Additional information

Editorial note: This article has been peer reviewed.

About this article

Verify currency and authenticity via CrossMark

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *