Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long thumbnail

Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long

Abstract

Reconstructing the sequence of circular RNAs (circRNAs) from short RNA sequencing reads has proved challenging given the similarity of circRNAs and their corresponding linear messenger RNAs. Previous sequencing methods were unable to achieve high-throughput detection of full-length circRNAs. Here we describe a protocol for enrichment and full-length sequencing of circRNA isoforms using nanopore technology. Circular reverse transcription and size selection achieves a 20-fold higher enrichment of circRNAs from total RNA compared to previous methods. We developed an algorithm, called circRNA identifier using long-read sequencing data (CIRI-long), to reconstruct the sequence of circRNAs. The workflow was validated with simulated data and by comparison to Illumina sequencing as well as quantitative real-time RT–PCR. We used CIRI-long to analyze adult mouse brain samples and systematically profile circRNAs, including mitochondria-derived and transcriptional read-through circRNAs. We identified a new type of intronic self-ligated circRNA that exhibits special splicing and expression patterns. Our method takes advantage of nanopore long reads and enables unbiased reconstruction of full-length circRNA sequences.

Data availability

The sequence data generated in this study have been deposited to the National Genomics Data Center54 (China National Center for Bioinformation: https://bigd.big.ac.cn/gsa) with accession number CRA003317. Details of these datasets are included in Supplementary Table 1 and the Methods section.

Code availability

CIRI-long is implemented in Python and can be freely accessed at https://github.com/Kevinzjy/CIRI-long. The software is packaged with sample datasets and has been extensively tested on Linux.

References

  1. 1.

    Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

  2. 2.

    Li, X., Yang, L. & Chen, L.-L. The biogenesis, functions, and challenges of circular RNAs. Mol. Cell 71, 428–442 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  3. 3.

    Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  4. 4.

    Westholm, J. O. et al. Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 9, 1966–1980 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  5. 5.

    Barrett, S. P., Parker, K. R., Horn, C., Mata, M. & Salzman, J. ciRS-7 exonic sequence is embedded in a long non-coding RNA locus. PLoS Genet. 13, e1007114 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  6. 6.

    Ruan, H. et al. Comprehensive characterization of circular RNAs in ~1000 human cancer cell lines. Genome Med. 11, 1–14 (2019).

    CAS 
    Article 

    Google Scholar
     

  7. 7.

    Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  8. 8.

    Yang, W., Du, W. W., Li, X., Yee, A. J. & Yang, B. B. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 35, 3919–3931 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  9. 9.

    Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  10. 10.

    Liu, C.-X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  11. 11.

    Xu, X. et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol. Cancer 19, 128 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  12. 12.

    Liu, X. et al. Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci. China Life Sci. 63, 1429–1449 (2020).

  13. 13.

    Wu, Z. et al. Mitochondrial genome-derived circRNA mc-COX2 functions as an oncogene in chronic lymphocytic leukemia. Mol. Ther. Nucleic Acids 20, 801–811 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  14. 14.

    Zhao, Q. et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell 183, 76–93 (2020).

  15. 15.

    Wu, J. et al. CircAST: full-length assembly and quantification of alternatively spliced isoforms in circular RNAs. Genomics Proteomics Bioinformatics 17, 522–534 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  16. 16.

    Zheng, Y., Ji, P., Chen, S., Hou, L. & Zhao, F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 11, 2 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  17. 17.

    Zhang, X.-O. et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26, 1277–1287 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  18. 18.

    Gao, Y. et al. Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat. Commun. 7, 12060 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  19. 19.

    Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  20. 20.

    You, X. et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat. Neurosci. 18, 603–610 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  21. 21.

    Rahimi, K., Venø, M. T., Dupont, D. M. & Kjems, J. Nanopore sequencing of full-length circRNAs in human and mouse brains reveals circRNA-specific exon usage and intron retention. Preprint at bioRxiv https://doi.org/10.1101/567164 (2019).

  22. 22.

    Xiao, M.-S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  23. 23.

    Lee, C. Generating consensus sequences from partial order multiple sequence alignment graphs. Bioinformatics 19, 999–1008 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  24. 24.

    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  25. 25.

    Zhang, J., Chen, S., Yang, J. & Zhao, F. Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat. Commun. 11, 90 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  26. 26.

    Yang, C., Chu, J., Warren, R. L. & Birol, I. NanoSim: nanopore sequence read simulator based on statistical characterization. Gigascience 6, 1–6 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  27. 27.

    Wu, W., Ji, P. & Zhao, F. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 21, 101 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  28. 28.

    Gruner, H., Cortés-López, M., Cooper, D. A., Bauer, M. & Miura, P. CircRNA accumulation in the aging mouse brain. Sci. Rep. 6, 38907–38907 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  29. 29.

    Rybak-Wolf, A. et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell 58, 870–885 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  30. 30.

    Akers, N. K., Schadt, E. E. & Losic, B. STAR chimeric post for rapid detection of circular RNA and fusion transcripts. Bioinformatics 34, 2364–2370 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  31. 31.

    Ragan, C., Goodall, G. J., Shirokikh, N. E. & Preiss, T. Insights into the biogenesis and potential functions of exonic circular RNA. Sci. Rep. 9, 2048 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  32. 32.

    Lei, Q. et al. Evolutionary insights into RNA trans-splicing in vertebrates. Genome Biol. Evol. 8, 562–577 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  33. 33.

    Talhouarne, G. J. S. & Gall, J. G. Lariat intronic RNAs in the cytoplasm of vertebrate cells. Proc. Natl Acad. Sci. USA 115, E7970–E7977 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  34. 34.

    Taggart, A. J. et al. Large-scale analysis of branchpoint usage across species and cell lines. Genome Res. 27, 639–649 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  35. 35.

    Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  36. 36.

    Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  37. 37.

    Takenaga, K., Nakamura, Y., Tokunaga, K., Kageyama, H. & Sakiyama, S. Isolation and characterization of a cDNA that encodes mouse fibroblast tropomyosin isoform 2. Mol. Cell. Biol. 8, 5561–5565 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  38. 38.

    Pollard, K. S., Hubisz, M. J., Rosenbloom, K. R. & Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110–121 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  39. 39.

    Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  40. 40.

    Gao, Y., Zhang, J. & Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinform. 19, 803–810 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  41. 41.

    Cheng, J., Metge, F. & Dieterich, C. Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics 32, 1094–1096 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  42. 42.

    Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  43. 43.

    Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  44. 44.

    Leger, A. & Leonardi, T. pycoQC, interactive quality control for Oxford Nanopore Sequencing. J. Open Source Softw. 4, 1236 (2019).

    Article 

    Google Scholar
     

  45. 45.

    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  46. 46.

    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  47. 47.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  48. 48.

    Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  49. 49.

    Szabo, L. et al. Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol. 16, 126 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  50. 50.

    Li, M. et al. Quantifying circular RNA expression from RNA-seq data using model-based framework. Bioinformatics 33, 2131–2139 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  51. 51.

    Wang, K. et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38, e178 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  52. 52.

    Song, X. et al. Circular RNA profile in gliomas revealed by identification tool UROBORUS. Nucleic Acids Res. 44, e87 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  53. 53.

    Hoffmann, S. et al. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol. 15, R34 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  54. 54.

    Wang, Y. et al. GSA: genome sequence archive. Genomics Proteomics Bioinformatics 15, 14–18 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  55. 55.

    Gao, Y. et al. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 4 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (32025009, 91940306, 31722031, 32071463, 91951209 and 91640117) and the National Key R&D Program (2018YFC0910400).

Author information

Author notes

  1. These authors contributed equally: Jinyang Zhang, Lingling Hou, Zhenqiang Zuo.

Affiliations

  1. Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China

    Jinyang Zhang, Lingling Hou, Zhenqiang Zuo, Peifeng Ji & Fangqing Zhao

  2. University of Chinese Academy of Sciences, Beijing, China

    Jinyang Zhang & Fangqing Zhao

  3. Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China

    Xiaorong Zhang & Yuanchao Xue

  4. Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China

    Fangqing Zhao

  5. Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China

    Fangqing Zhao

Contributions

F.Z. conceived the project. J.Z. implemented the algorithm and performed data analysis. L.H., Z.Z., Y.X. and X.Z. performed the experiments and generated sequencing data. J.Z., J.P. and F.Z. wrote the manuscript with the contribution of all authors.

Corresponding author

Correspondence to
Fangqing Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hou, L., Zuo, Z. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long.
Nat Biotechnol (2021). https://doi.org/10.1038/s41587-021-00842-6

Download citation

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *