CRISPR base editing lowers cholesterol in monkeys thumbnail

CRISPR base editing lowers cholesterol in monkeys

Targeting a gene linked to cardiovascular disease shows therapeutic promise.

CRISPR base editors are advancing rapidly toward the clinic with the publication of two studies demonstrating successful reduction of blood cholesterol in monkeys. The papers, by Rothgangl et al.1 in Nature Biotechnology and Musunuru et al.2 in Nature, show that transient expression of base editors to knock out a gene associated with cardiovascular disease is effective and safe in non-human primates. Delivery of the base editors to the liver in lipid nanoparticles led to efficient knockout of the target gene—proprotein convertase subtilisin/kexin type 9 (PCSK9)—and significant reductions of blood cholesterol, with no substantial off-target editing or serious immune responses. These impressive results suggest that the first cardiovascular gene-editing therapy could rapidly become a reality once the approach is fine-tuned for human testing.

Access options

Subscribe to Journal

Get full journal access for 1 year

$59.00

only $4.92 per issue

All prices are NET prices.

VAT will be added later in the checkout.

Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Delivery of CRISPR base editing components in lipid nanoparticles for precise genome editing.

References

  1. 1.

    Rothgangl, T. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-00933-4 (2021).

    Article 
    PubMed 

    Google Scholar
     

  2. 2.

    Musunuru, K. et al. Nature 593, 429–434 (2021).

    CAS 
    Article 

    Google Scholar
     

  3. 3.

    Zhang, D. W. et al. J. Biol. Chem. 282, 18602–18612 (2007).

    CAS 
    Article 

    Google Scholar
     

  4. 4.

    Abifadel, M. et al. Nat. Genet. 34, 154–156 (2003).

    CAS 
    Article 

    Google Scholar
     

  5. 5.

    Cohen, J. et al. Nat. Genet. 37, 161–165 (2005).

    CAS 
    Article 

    Google Scholar
     

  6. 6.

    First in vivo human genome editing trial. Nat. Biotechnol. 36, 5 (2018).

  7. 7.

    Anzalone, A. V., Koblan, L. W. & Liu, D. R. Nat. Biotechnol. 38, 824–844 (2020).

    CAS 
    Article 

    Google Scholar
     

  8. 8.

    Jin, S. et al. Science 364, 292–295 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  9. 9.

    Zuo, E. et al. Science 364, 289–292 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  10. 10.

    Chadwick, A. C., Wang, X. & Musunuru, K. Arterioscler. Thromb. Vasc. Biol. 37, 1741–1747 (2017).

    CAS 
    Article 

    Google Scholar
     

  11. 11.

    Gaudelli, N. M. et al. Nat. Biotechnol. 38, 892–900 (2020).

    CAS 
    Article 

    Google Scholar
     

  12. 12.

    Hanlon, K. S. et al. Nat. Commun. 10, 4439 (2019).

    Article 

    Google Scholar
     

Download references

Author information

Affiliations

  1. Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands

    Sebastiaan Johannes van Kampen & Eva van Rooij

  2. Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands

    Eva van Rooij

Corresponding author

Correspondence to
Eva van Rooij.

Ethics declarations

Competing interests

The authors declare no competing interests.

About this article

Verify currency and authenticity via CrossMark

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *