MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells thumbnail

MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells

Abstract

The ability to identify T cells that recognize specific peptide antigens bound to major histocompatibility complex (MHC) molecules has enabled enumeration and molecular characterization of the lymphocytes responsible for cell-mediated immunity. Fluorophore-labeled peptide:MHC class I (p:MHCI) tetramers are well-established reagents for identifying antigen-specific CD8+ T cells by flow cytometry, but efforts to extend the approach to CD4+ T cells have been less successful, perhaps owing to lower binding strength between CD4 and MHC class II (MHCII) molecules. Here we show that p:MHCII tetramers engineered by directed evolution for enhanced CD4 binding outperform conventional tetramers for the detection of cognate T cells. Using the engineered tetramers, we identified about twice as many antigen-specific CD4+ T cells in mice immunized against multiple peptides than when using traditional tetramers. CD4 affinity-enhanced p:MHCII tetramers, therefore, allow direct sampling of antigen-specific CD4+ T cells that cannot be accessed with conventional p:MHCII tetramer technology. These new reagents could provide a deeper understanding of the T cell repertoire.

Access options

Subscribe to Journal

Get full journal access for 1 year

$59.00

only $4.92 per issue

All prices are NET prices.

VAT will be added later in the checkout.

Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Xiong, Y., Kern, P., Chang, H. & Reinherz, E. T cell receptor binding to a pMHCII ligand is dinetically distinct from and independent of CD4. J. Biol. Chem. 276, 5659–5667 (2001).

    CAS 
    Article 

    Google Scholar
     

  2. 2.

    Jonsson, P. et al. Remarkably low affinity of CD4/peptide-major histocompatibility complex class II protein interactions. Proc. Natl Acad. Sci. USA 113, 5682–5687 (2016).

    CAS 
    Article 

    Google Scholar
     

  3. 3.

    Martinez, R. J., Andargachew, R., Martinez, H. A. & Evavold, B. D. Low-affinity CD4+ T cells are major responders in the primary immune response. Nat. Commun. 7, 13848 (2016).

    CAS 
    Article 

    Google Scholar
     

  4. 4.

    Davis, M. M. T cell receptor gene diversity and selection. Annu. Rev. Biochem. 59, 475–496 (1990).

    CAS 
    Article 

    Google Scholar
     

  5. 5.

    Rudolph, M. G., Stanfield, R. L. & Wilson, I. A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    CAS 
    Article 

    Google Scholar
     

  6. 6.

    Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    CAS 
    Article 

    Google Scholar
     

  7. 7.

    Doherty, P. C. The tetramer transformation. J. Immunol. 187, 5–6 (2011).

    CAS 
    Article 

    Google Scholar
     

  8. 8.

    Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    CAS 
    Article 

    Google Scholar
     

  9. 9.

    Wang, X. X. et al. Affinity maturation of human CD4 by yeast surface display and crystal structure of a CD4-HLA-DR1 complex. Proc. Natl Acad. Sci. USA 108, 15960–15965 (2011).

    CAS 
    Article 

    Google Scholar
     

  10. 10.

    Govern, C. C., Paczosa, M. K., Chakraborty, A. K. & Huseby, E. S. Fast on-rates allow short dwell time ligands to activate T cells. Proc. Natl Acad. Sci. USA 107, 8724–8729 (2010).

    CAS 
    Article 

    Google Scholar
     

  11. 11.

    Mortensen, R. Overview of gene targeting by homologous recombination. Curr. Protoc. Mol. Biol. Chapter 23.1, Unit 23.1 (2006).

  12. 12.

    Kolawole, E. M., Andargachew, R., Liu, B., Jacobs, J. R. & Evavold, B. D. 2D kinetic analysis of TCR and CD8 coreceptor for LCMV GP33 epitopes. Front. Immunol. 9, 2348 (2018).

    Article 

    Google Scholar
     

  13. 13.

    Oxenius, A., Bachmann, M. F., Zinkernagel, R. M. & Hengartner, H. Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    CAS 
    Article 

    Google Scholar
     

  14. 14.

    Oxenius, A. et al. Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur. J. Immunol. 25, 3402–3411 (1995).

    CAS 
    Article 

    Google Scholar
     

  15. 15.

    Nelson, R. W. et al. T cell receptor cross-reactivity between similar foreign and self peptides influences naive cell population size and autoimmunity. Immunity 42, 95–107 (2015).

    CAS 
    Article 

    Google Scholar
     

  16. 16.

    Wyer, J. R. et al. T cell receptor and coreceptor CD8 alphaalpha bind peptide-MHC independently and with distinct kinetics. Immunity 10, 219–225 (1999).

    CAS 
    Article 

    Google Scholar
     

  17. 17.

    Rees, W. et al. An inverse relationship between T cell receptor affinity and antigen dose during CD4+ T cell responses in vivo and in vitro. Proc. Natl Acad. Sci. USA 96, 9781–9786 (1999).

    CAS 
    Article 

    Google Scholar
     

  18. 18.

    Moon, J. J. et al. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213 (2007).

    CAS 
    Article 

    Google Scholar
     

  19. 19.

    Robertson, J. M., Jensen, P. E. & Evavold, B. D. DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323–339 epitope. J. Immunol. 164, 4706–4712 (2000).

    CAS 
    Article 

    Google Scholar
     

  20. 20.

    Malhotra, D. et al. Tolerance is established in polyclonal CD4+ T cells by distinct mechanisms, according to self-peptide expression patterns. Nat. Immunol. 17, 187–195 (2016).

    CAS 
    Article 

    Google Scholar
     

  21. 21.

    Masteller, E. L. et al. Peptide-MHC class II dimers as therapeutics to modulate antigen-specific T cell responses in autoimmune diabetes. J. Immunol. 171, 5587–5595 (2003).

    CAS 
    Article 

    Google Scholar
     

  22. 22.

    Stratmann, T. et al. Susceptible MHC alleles, not background genes, select an autoimmune T cell reactivity. J. Clin. Invest. 112, 902–914 (2003).

    CAS 
    Article 

    Google Scholar
     

  23. 23.

    Huang, J. et al. Detection, phenotyping, and quantification of antigen-specific T cells using a peptide-MHC dodecamer. Proc. Natl Acad. Sci. USA 113, E1890–E1897 (2016).

    CAS 
    Article 

    Google Scholar
     

  24. 24.

    Williams, T. et al. Development of T cell lines sensitive to antigen stimulation. J. Immunol. Methods 462, 65–73 (2018).

    CAS 
    Article 

    Google Scholar
     

  25. 25.

    Slavin, A. et al. Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28, 109–120 (1998).

    CAS 
    Article 

    Google Scholar
     

  26. 26.

    Bunch, T. A., Grinblat, Y. & Goldstein, L. S. Characterization and use of the Drosophila metallothionein promoter in cultured Drosophila melanogaster cells. Nucleic Acids Res. 16, 1043–1061 (1988).

    CAS 
    Article 

    Google Scholar
     

  27. 27.

    Moon, J. J. et al. Quantitative impact of thymic selection on Foxp3+ and Foxp3 subsets of self-peptide/MHC class II-specific CD4+ T cells. Proc. Natl Acad. Sci. USA 108, 14602–14607 (2011).

    CAS 
    Article 

    Google Scholar
     

  28. 28.

    Kotov, D. I. et al. TCR affinity biases Th cell differentiation by regulating CD25, Eef1e1, and Gbp2. J. Immunol. 202, 2535–2545 (2019).

    CAS 
    Article 

    Google Scholar
     

  29. 29.

    Choi, Y. S. et al. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. J. Immunol. 190, 4014–4026 (2013).

    CAS 
    Article 

    Google Scholar
     

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01 AI143826 and R01 AI039614 to M.K.J., F32 AI114050 to D.M., T32 AI083196 and T32 AI007313 to D.I.K. and R01 AI096879 to B.D.E.

Author information

Author notes

  1. Deepali Malhotra

    Present address: AstraZeneca, Gaithersburg, MD, USA

  2. Dmitri I. Kotov

    Present address: University of California, Berkeley, Berkeley, CA, USA

Affiliations

  1. Department of Microbiology and Immunology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA

    Thamotharampillai Dileepan, Deepali Malhotra, Dmitri I. Kotov, Peter D. Krueger & Marc K. Jenkins

  2. Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, USA

    Elizabeth M. Kolawole & Brian D. Evavold

Contributions

T.D., D.M., D.I.K., P.D.K., and E.M.K. designed and performed experiments and edited the manuscript. B.D.E. designed experiments and edited the manuscript. M.K.J. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to
Marc K. Jenkins.

Ethics declarations

Ethics

Experiments were approved by the University of Minnesota Institutional Animal Care and Use Committee and conducted in accordance with its policies.

Competing interests

M.K.J, T.D. and D.M. are co-inventors on a patent application covering CD4 affinity enhanced p:MHCII tetramers owned by Regents of the University of Minnesota (#PCT/US19/44605 – Co-receptor affinity enhanced major histocompatibility class II molecules).

Additional information

Peer review information Nature Biotechnology thanks Lawrence Stern and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dileepan, T., Malhotra, D., Kotov, D.I. et al. MHC class II tetramers engineered for enhanced binding to CD4 improve detection of antigen-specific T cells.
Nat Biotechnol (2021). https://doi.org/10.1038/s41587-021-00893-9

Download citation

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *