Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens thumbnail

Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens

Abstract

CRISPR screens have been used to connect genetic perturbations with changes in gene expression and phenotypes. Here we describe a CRISPR-based, single-cell combinatorial indexing assay for transposase-accessible chromatin (CRISPR–sciATAC) to link genetic perturbations to genome-wide chromatin accessibility in a large number of cells. In human myelogenous leukemia cells, we apply CRISPR–sciATAC to target 105 chromatin-related genes, generating chromatin accessibility data for ~30,000 single cells. We correlate the loss of specific chromatin remodelers with changes in accessibility globally and at the binding sites of individual transcription factors (TFs). For example, we show that loss of the H3K27 methyltransferase EZH2 increases accessibility at heterochromatic regions involved in embryonic development and triggers expression of genes in the HOXA and HOXD clusters. At a subset of regulatory sites, we also analyze changes in nucleosome spacing following the loss of chromatin remodelers. CRISPR–sciATAC is a high-throughput, single-cell method for studying the effect of genetic perturbations on chromatin in normal and disease states.

Access options

Subscribe to Journal

Get full journal access for 1 year

$59.00

only $4.92 per issue

All prices are NET prices.

VAT will be added later in the checkout.

Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

Processed and raw data can be downloaded from NCBI GEO (PRJNA674902, GSE161002).

Code availability

The scripts and pipeline for the analysis can be found at https://gitlab.com/sanjanalab/crispr-sciatac.

References

  1. 1.

    Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  2. 2.

    Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  3. 3.

    Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  4. 4.

    Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  5. 5.

    Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  6. 6.

    Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176, 361–376 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  7. 7.

    Cusanovich, D. A. et al. Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  8. 8.

    Forbes, S. A. et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 45, D777–D783 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  9. 9.

    Kolde, R., Laur, S., Adler, P. & Vilo, J. Robust rank aggregation for gene list integration and meta-analysis. Bioinformatics 28, 573–580 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  10. 10.

    Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  11. 11.

    Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  12. 12.

    Margueron, R. et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol. Cell 32, 503–518 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  13. 13.

    Mathelier, A. et al. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110–D115 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  14. 14.

    Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. ChromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  15. 15.

    Medvedeva, Y. A. et al. EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database (Oxford) 2015, bav067 (2015).

  16. 16.

    Lejeune, E. et al. The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi. Curr. Biol. 17, 1219–1224 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  17. 17.

    Mathur, R. et al. ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat. Genet. 49, 296–302 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  18. 18.

    Nord, A. S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  19. 19.

    Vierbuchen, T. et al. AP-1 transcription factors and the BAF complex mediate signal-dependent enhancer selection. Mol. Cell 68, 1067–1082 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  20. 20.

    Hakimi, M. A. et al. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 123, 3175–3184 (2002).


    Google Scholar
     

  21. 21.

    Wen, Z., Huang, Z. T., Zhang, R. & Peng, C. ZNF143 is a regulator of chromatin loop. Cell Biol. Toxicol. 34, 471–478 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  22. 22.

    Swiers, G., Patient, R. & Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol. 294, 525–540 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  23. 23.

    Li, M. et al. Dynamic regulation of transcription factors by nucleosome remodeling. Elife 4, e06249 (2015).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  24. 24.

    Kundaje, A. et al. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Res. 22, 1735–1747 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  25. 25.

    Kelso, T. W. R. et al. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. Elife 6, e30506 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  26. 26.

    Guo, X., Chitale, P. & Sanjana, N. E. Target discovery for precision medicine using high-throughput genome engineering. Adv. Exp. Med. Biol. 1016, 123–145 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  27. 27.

    Papalexi, E. et al. Characterizing the molecular regulation of inhibitory immune checkpoints with multimodal single-cell screens. Nat. Genet. 53, 322–331 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  28. 28.

    Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  29. 29.

    Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  30. 30.

    Meier, J. A., Zhang, F. & Sanjana, N. E. GUIDES: sgRNA design for loss-of-function screens. Nat. Methods 14, 831–832 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  31. 31.

    Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  32. 32.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  33. 33.

    Goryshin, I. Y. & Reznikoff, W. S. Tn5 in vitro transposition. J. Biol. Chem. 273, 7367–7374 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  34. 34.

    Nørholm, M. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10, 21 (2010).

  35. 35.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  36. 36.

    Richter, K. N. et al. Glyoxal as an alternative fixative to formaldehyde in immunostaining and super‐resolution microscopy. EMBO J. 37, 139–159 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  37. 37.

    Adey, A. et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res. 24, 2041–2049 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  38. 38.

    Amini, S. et al. Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat. Genet. 46, 1343–1349 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  39. 39.

    Liu, X. S. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  40. 40.

    Preissl, S. et al. Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation. Nat. Neurosci. 21, 432–439 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  41. 41.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

  42. 42.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  43. 43.

    Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  44. 44.

    Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL meta-analysis. Preprint at bioRxiv https://doi.org/10.1101/447367 (2018).

  45. 45.

    The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

  46. 46.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  47. 47.

    Duttke, S. et al. Identification and dynamic quantification of regulatory elements using total RNA. Genome Res. 29, 1836–1846 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  48. 48.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).


    Google Scholar
     

Download references

Acknowledgements

We thank the entire Sanjana laboratory for support and advice. We thank J. Morris for help with eQTL resources, M. Zaran and R. Satija for computational resources and the NYGC Sequencing Platform and NYU Biology Genomics Core for sequencing resources. BL21(DE3) cells transformed with pET-PfuX7 were kindly provided by J. Gregory. N.L.-B. is supported by a postdoctoral fellowship from the Human Frontier Science Program Organization (no. LT000672/2019-L), an EMBO long-term fellowship (no. ALTF 826-2018) and the Weizmann Institute of Science National Postdoctoral Award Program for Advancing Women in Science. N.E.S. is supported by NYU and NYGC startup funds, NIH/NHGRI (nos. R00HG008171 and DP2HG010099), NIH/NCI (no. R01CA218668), DARPA (no. D18AP00053), the Sidney Kimmel Foundation, the Melanoma Research Alliance and the Brain and Behavior Foundation.

Author information

Author notes

  1. These authors contributed equally: Noa Liscovitch-Brauer, Antonino Montalbano.

Affiliations

  1. New York Genome Center, New York, NY, USA

    Noa Liscovitch-Brauer, Antonino Montalbano, Jiale Deng, Alejandro Méndez-Mancilla, Hans-Hermann Wessels, Nicholas G. Moss, Chia-Yu Kung, Akash Sookdeo, Xinyi Guo, Evan Geller, Suma Jaini, Peter Smibert & Neville E. Sanjana

  2. Department of Biology, New York University, New York, NY, USA

    Noa Liscovitch-Brauer, Antonino Montalbano, Jiale Deng, Alejandro Méndez-Mancilla, Hans-Hermann Wessels, Nicholas G. Moss, Chia-Yu Kung, Akash Sookdeo, Xinyi Guo, Evan Geller & Neville E. Sanjana

  3. Technology Innovation Lab, New York Genome Center, New York, NY, USA

    Suma Jaini & Peter Smibert

Contributions

N.E.S. conceived and supervised the project. N.E.S., A.M. and N.L.-B. designed the experiments. A.M., N.L.-B., J.D., A.M.-M., C.-Y.K. and A.S. performed the experiments. N.L.-B., A.M., J.D., N.E.S., H.-H.W. and N.G.M. analyzed the data. P.S. isolated TnY. S.J. purified PhuX7. A.M., J.D., C.-Y.K., A.S., P.S. and S.J. purified TnY. N.L.-B., A.M. and N.E.S. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to
Neville E. Sanjana.

Ethics declarations

Competing interests

The New York Genome Center and New York University have applied for patents relating to the work in this article. N.E.S. is an adviser to Vertex.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liscovitch-Brauer, N., Montalbano, A., Deng, J. et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens.
Nat Biotechnol (2021). https://doi.org/10.1038/s41587-021-00902-x

Download citation

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *