Quantitative mapping of the cellular small RNA landscape with AQRNA-seq thumbnail

Quantitative mapping of the cellular small RNA landscape with AQRNA-seq

Abstract

Current next-generation RNA-sequencing (RNA-seq) methods do not provide accurate quantification of small RNAs within a sample, due to sequence-dependent biases in capture, ligation and amplification during library preparation. We present a method, absolute quantification RNA-sequencing (AQRNA-seq), that minimizes biases and provides a direct, linear correlation between sequencing read count and copy number for all small RNAs in a sample. Library preparation and data processing were optimized and validated using a 963-member microRNA reference library, oligonucleotide standards of varying length, and RNA blots. Application of AQRNA-seq to a panel of human cancer cells revealed >800 detectable miRNAs that varied during cancer progression, while application to bacterial transfer RNA pools, with the challenges of secondary structure and abundant modifications, revealed 80-fold variation in tRNA isoacceptor levels, stress-induced site-specific tRNA fragmentation, quantitative modification maps, and evidence for stress-induced, tRNA-driven, codon-biased translation. AQRNA-seq thus provides a versatile means to quantitatively map the small RNA landscape in cells.

Access options

Subscribe to Journal

Get full journal access for 1 year

$59.00

only $4.92 per issue

All prices are NET prices.

VAT will be added later in the checkout.

Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

All sequencing and proteomics data that support the findings of this study have been variously deposited in public databases: RNA-seq studies reported in Figs. 35, Supplementary Figs. 2, 4 and 8 and the proteomics studies reported in Fig. 4 and Supplementary Fig. 6 have been deposited in the NCBI Sequence Read Archive under BioProject ID PRJNA579244; miRNA and standards data shown in Fig. 2 have been deposited in the Gene Expression Omnibus (GEO) under accession no. GSE139936; and data for miRNA studies in HMEC cells shown in Fig. 6 have been deposited in GEO as accession no. GSE159434.

Code availability

The software used in the studies presented here is publicly available as follows. Blast v.2.6.0 (nucleotide BLAST) available at https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastDocs&DOC_TYPE=Download. Peakfit.m v.9.0 available at Tom O’Haver, MATLAB Central File Exchange: https://terpconnect.umd.edu/~toh/spectrum/. fgrep (Linux command) available at https://unix.stackexchange.com/questions/17949/what-is-the-difference-between-grep-egrep-and-fgrep. fastxtoolkit v.0.013 available at http://hannonlab.cshl.edu/fastx_toolkit/. Custom python scripts are available at GitHub https://github.com/dedonlab/ (https://github.com/dedonlab/aqrnaseq for prokaryotic process scripts and https://github.com/dedonlab/general_aqrnaseq for eukaryotic/general pipeline scripts).

References

  1. 1.

    Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  2. 2.

    Cech, T. R. & Steitz, J. A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  3. 3.

    Hafner, M. et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17, 1697–1712 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  4. 4.

    Zhang, Z., Lee, J. E., Riemondy, K., Anderson, E. M. & Yi, R. High-efficiency RNA cloning enables accurate quantification of miRNA expression by deep sequencing. Genome Biol. 14, R109 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  5. 5.

    Fuchs, R. T., Sun, Z., Zhuang, F. & Robb, G. B. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS ONE 10, e0126049 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  6. 6.

    Alon, S. et al. Barcoding bias in high-throughput multiplex sequencing of miRNA. Genome Res. 21, 1506–1511 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  7. 7.

    Zhuang, F., Fuchs, R. T., Sun, Z., Zheng, Y. & Robb, G. B. Structural bias in T4 RNA ligase-mediated 3’-adapter ligation. Nucleic Acids Res. 40, e54 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  8. 8.

    Pang, Y. L., Abo, R., Levine, S. S. & Dedon, P. C. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res. 42, e170 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  9. 9.

    Linsen, S. E. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods 6, 474–476 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  10. 10.

    Machnicka, M. A., Olchowik, A., Grosjean, H. & Bujnicki, J. M. Distribution and frequencies of post-transcriptional modifications in tRNAs. RNA Biol. 11, 1619–1629 (2014).

    PubMed 
    Article 

    Google Scholar
     

  11. 11.

    Björk, G. R. et al. Transfer RNA modification. Annu. Rev. Biochem. 56, 263–287 (1987).

    PubMed 
    Article 

    Google Scholar
     

  12. 12.

    Motorin, Y. & Helm, M. Methods for RNA modification mapping using deep sequencing: established and new emerging technologies. Genes (Basel) 10, 35 (2019).

  13. 13.

    Motorin, Y., Muller, S., Behm‐Ansmant, I. & Branlant, C. Identification of modified residues in RNAs by reverse transcription‐based methods. Methods Enzymol. 425, 21–53 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  14. 14.

    Shigematsu, M. et al. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res. 45, e70 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  15. 15.

    Gogakos, T. et al. Characterizing expression and processing of precursor and mature human tRNAs by Hydro-tRNAseq and PAR-CLIP. Cell Rep. 20, 1463–1475 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  16. 16.

    Kim, H. et al. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3’ end modification. Nucleic Acids Res. 47, 2630–2640 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  17. 17.

    Dai, Q., Zheng, G., Schwartz, M. H., Clark, W. C. & Pan, T. Selective enzymatic demethylation of N(2),N(2) -dimethylguanosine in RNA and its application in high-throughput tRNA sequencing. Angew. Chem. Int. Ed. Engl. 56, 5017–5020 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  18. 18.

    Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  19. 19.

    Cozen, A. E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  20. 20.

    Xu, H., Yao, J., Wu, D. C. & Lambowitz, A. M. Improved TGIRT-seq methods for comprehensive transcriptome profiling with decreased adapter dimer formation and bias correction. Sci. Rep. 9, 7953 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  21. 21.

    Mohr, S. et al. Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA 19, 958–970 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  22. 22.

    Jayaprakash, A. D., Jabado, O., Brown, B. D. & Sachidanandam, R. Identification and remediation of biases in the activity of RNA ligases in small-RNA deep sequencing. Nucleic Acids Res. 39, e141 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  23. 23.

    Lovett, S. T. & Kolodner, R. D. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by the recJ gene of Escherichia coli. Proc. Natl Acad. Sci. USA 86, 2627–2631 (1989).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  24. 24.

    Shepherd, J. & Ibba, M. Bacterial transfer RNAs. FEMS Microbiol. Rev. 39, 280–300 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  25. 25.

    Ardell, D. H. & Hou, Y. M. Initiator tRNA genes template the 3’ CCA end at high frequencies in bacteria. BMC Genomics 17, 1003 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  26. 26.

    Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  27. 27.

    Herbert, Z. T. et al. Multisite evaluation of next-generation methods for small RNA quantification. J. Biomol. Tech. 31, 47–56 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  28. 28.

    Coenen-Stass, A. M. L. et al. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 15, 1133–1145 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  29. 29.

    Zhang, Y. et al. IsomiR Bank: a research resource for tracking IsomiRs. Bioinformatics 32, 2069–2071 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  30. 30.

    Dong, H., Nilsson, L. & Kurland, C. G. Co-variation of tRNA abundance and codon usage in Escherichia coli at differing growth rates. J. Mol. Biol. 260, 649–663 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  31. 31.

    Lewis, K. Persister cells. Annu. Rev. Microbiol. 64, 357–372 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  32. 32.

    Grant, S. S. & Hung, D. T. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4, 273–283 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  33. 33.

    Zhang, Y. Persisters, persistent infections and the Yin–Yang model. Emerg. Microbes Infect. 3, e3 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  34. 34.

    Steinberg, S., Misch, A. & Sprinzl, M. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 21, 3011–3015 (1993).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  35. 35.

    Chan, P. P. & Lowe, T. M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes. Nucleic Acids Res. 44, D184–D189 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  36. 36.

    Chionh, Y. H. et al. tRNA-mediated codon-biased translation in mycobacterial hypoxic persistence. Nat. Commun. 7, 13302 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  37. 37.

    Doyle, F. et al. Gene- and genome-based analysis of significant codon patterns in yeast, rat and mice genomes with the CUT Codon UTilization tool. Methods 107, 98–109 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  38. 38.

    Phizicky, E. M. & Hopper, A. K. tRNA biology charges to the front. Genes Dev. 24, 1832–1860 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  39. 39.

    Chernyakov, I., Whipple, J. M., Kotelawala, L., Grayhack, E. J. & Phizicky, E. M. Degradation of several hypomodified mature tRNA species in Saccharomyces cerevisiae is mediated by Met22 and the 5’-3’ exonucleases Rat1 and Xrn1. Genes Dev. 22, 1369–1380 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  40. 40.

    Hopper, A. K., Pai, D. A. & Engelke, D. R. Cellular dynamics of tRNAs and their genes. FEBS Lett. 584, 310–317 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  41. 41.

    Anderson, P. & Ivanov, P. tRNA fragments in human health and disease. FEBS Lett. 588, 4297–4304 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  42. 42.

    Cruz, J. W. et al. Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat. Commun. 6, 7480 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  43. 43.

    Schifano, J. M. et al. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res. 44, 1256–1270 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  44. 44.

    Lyons, S. M., Fay, M. M. & Ivanov, P. The role of RNA modifications in the regulation of tRNA cleavage. FEBS Lett. 592, 2828–2844 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  45. 45.

    Fu, H. et al. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett. 583, 437–442 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  46. 46.

    Haiser, H. J., Karginov, F. V., Hannon, G. J. & Elliot, M. A. Developmentally regulated cleavage of tRNAs in the bacterium Streptomyces coelicolor. Nucleic Acids Res. 36, 732–741 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  47. 47.

    Boccaletto, P. et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46, D303–D307 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  48. 48.

    Kietrys, A., Velema, W. & Kool, E. Fingerprints of modified RNA bases from deep sequencing profiles. J. Am. Chem. Soc. 139, 17074–17081 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  49. 49.

    Hauenschild, R. et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res. 43, 9950–9964 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  50. 50.

    Levanon, E. Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  51. 51.

    Elenbaas, B. et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15, 50–65 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  52. 52.

    Kendall, S. D., Adam, S. J. & Counter, C. M. Genetically engineered human cancer models utilizing mammalian transgene expression. Cell Cycle 5, 1074–1079 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  53. 53.

    Qattan, A. et al. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 17, 799 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  54. 54.

    Xuan, P., Li, L., Zhang, T., Zhang, Y. & Song, Y. Prediction of disease-related microRNAs through integrating attributes of microRNA nodes and multiple kinds of connecting edges. Molecules 24, 3099 (2019).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  55. 55.

    Wang, X. et al. Differential expression profile analysis of miRNAs with HER-2 overexpression and intervention in breast cancer cells. Int. J. Clin. Exp. Pathol. 10, 5039–5062 (2017).

    CAS 

    Google Scholar
     

  56. 56.

    Maltseva, D. V. et al. miRNome of inflammatory breast cancer. BMC Res. Notes 7, 871 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  57. 57.

    Ueda, S., Takanashi, M., Sudo, K., Kanekura, K. & Kuroda, M. miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy. Lab. Invest. 100, 863–873 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  58. 58.

    Pirouz, M., Ebrahimi, A. G. & Gregory, R. I. Unraveling 3’-end RNA uridylation at nucleotide resolution. Methods 155, 10–19 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  59. 59.

    Sorefan, K. et al. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence 3, 4 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  60. 60.

    Dard-Dascot, C. et al. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics 19, 118 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  61. 61.

    Wong, R. K. Y., MacMahon, M., Woodside, J. V. & Simpson, D. A. A comparison of RNA extraction and sequencing protocols for detection of small RNAs in plasma. BMC Genomics 20, 446 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  62. 62.

    Heinicke, F. et al. Systematic assessment of commercially available low-input miRNA library preparation kits. RNA Biol. 17, 75–86 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  63. 63.

    Chu, Y. et al. Intramolecular circularization increases efficiency of RNA sequencing and enables CLIP-Seq of nuclear RNA from human cells. Nucleic Acids Res. 43, e75 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  64. 64.

    Lucigen CircLigase II Product Manual, p. 3. https://www.lucigen.com/docs/manuals/MA298E-CircLigase-II-ssDNA-Ligase.pdf (July 2019).

  65. 65.

    Xiong, Y. et al. A comparison of mRNA sequencing with random primed and 3’-directed libraries. Sci. Rep. 7, 14626 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  66. 66.

    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  67. 67.

    Hia, F. et al. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides. Nucleic Acids Res. 43, e32 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  68. 68.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

Download references

Acknowledgements

We thank members of D. Bartel’s laboratory (Whitehead Institute and MIT Department of Biology), especially A. Stefano and D. Bartel, for assistance with RNA blots. We thank P. Ivanov (Harvard Medical School) for sharing synthetic RNA standards. This work was supported by grants from the National Natural Science Foundation of China (no. 32070629 to B.C.), the US National Science Foundation (no. MCB-1412379 to V.C.-L.), the National Institute of Environmental Health Sciences (no. ES002109) and the National Research Foundation of Singapore through the Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance IRG (P.C.D.). J.F.H. was supported by MIT Toxicology Training grant no. T32-ES007020, D.Y. by a postdoctoral fellowship from A*STAR, Singapore and S.M.H. by a postdoctoral fellowship from the Swiss National Science Foundation.

Author information

Author notes

  1. Jennifer F. Hu

    Present address: Bristol Myers Squibb, Seattle, WA, USA

  2. Daniel Yim

    Present address: A*STAR Genome Institute of Singapore, Singapore, Singapore

  3. Sabrina M. Huber

    Present address: Laboratory of Toxicology, ETH Zürich, Zürich, Switzerland

  4. Nick Davis

    Present address: Theon Therapeutics, Cambridge, MA, USA

Affiliations

  1. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA

    Jennifer F. Hu

  2. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

    Daniel Yim, Sabrina M. Huber, Nick Davis, Sidney Vermeulen, Michael S. DeMott, Stuart S. Levine, Peter C. Dedon & Bo Cao

  3. BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA

    Duanduan Ma & Stuart S. Levine

  4. Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, USA

    Jo Marie Bacusmo & Valérie de Crécy-Lagard

  5. KK Research Center, KK Women’s and ChildrenBristol Myers Squibb’s Hospital, Singapore, Singapore

    Jieliang Zhou

  6. The RNA Institute and Department of Biology, University at Albany, Albany, NY, USA

    Thomas J. Begley

  7. Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

    Michael S. DeMott, Stuart S. Levine & Peter C. Dedon

  8. Singapore-MIT Alliance for Research and Technology Antimicrobial Resistance IRG, Singapore, Singapore

    Peter C. Dedon & Bo Cao

  9. College of Life Sciences, Qufu Normal University, Qufu, China

    Bo Cao

Contributions

P.C.D., B.C. and J.F.H. conceived of AQRNA-seq, designed the experiments and wrote the first draft of the manuscript. P.C.D., J.F.H., B.C. and D.Y. developed the method and performed the sequencing experiments. J.F.H., B.C., D.M. and S.S.L. developed, implemented and interpreted the data-processing workflows and computational analyses. D.Y., S.V. and J.F.H. performed mycobacterial culturing and RNA isolation. T.J.B. analyzed proteomics data for codon usage patterns. J.M.B. performed E. coli culturing and RNA isolation. N.D. performed proteomics analyses. S.M.H. optimized experimental conditions and characterized demethylation efficiency by LC–MS. S.M.H. and J.F.H. performed RNA blot analyses. M.S.D. contributed reagents and analyzed miRNA data. J.Z. analyzed miRNA data. V.C.-L. supervised E. coli experiments and contributed insights and analysis. All authors participated in the writing of the manuscript.

Corresponding authors

Correspondence to
Peter C. Dedon or Bo Cao.

Ethics declarations

Competing interests

B.C., J.F.H., D.Y., S.M.H., M.S.D. and P.C.D. are co-inventors on two patents (PCT/US2019/013714, US 2019/0284624 A1) relating to the published work.

Additional information

Peer review information Nature Biotechnology thanks James Hadfield and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, J.F., Yim, D., Ma, D. et al. Quantitative mapping of the cellular small RNA landscape with AQRNA-seq.
Nat Biotechnol (2021). https://doi.org/10.1038/s41587-021-00874-y

Download citation

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *