Spatial tissue profiling by imaging-free molecular tomography thumbnail

Spatial tissue profiling by imaging-free molecular tomography

Abstract

Several techniques are currently being developed for spatially resolved omics profiling, but each new method requires the setup of specific detection strategies or specialized instrumentation. Here we describe an imaging-free framework to localize high-throughput readouts within a tissue by cutting the sample into thin strips in a way that allows subsequent image reconstruction. We implemented this framework to transform a low-input RNA sequencing protocol into an imaging-free spatial transcriptomics technique (called STRP-seq) and validated it by profiling the spatial transcriptome of the mouse brain. We applied the technique to the brain of the Australian bearded dragon, Pogona vitticeps. Our results reveal the molecular anatomy of the telencephalon of this lizard, providing evidence for a marked regionalization of the reptilian pallium and subpallium. We expect that STRP-seq can be used to derive spatially resolved data from a range of other omics techniques.

Access options

Subscribe to Journal

Get full journal access for 1 year

$59.00

only $4.92 per issue

All prices are NET prices.

VAT will be added later in the checkout.

Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Data availability

RNA-seq data are available at the Gene Expression Omnibus repository (https://www.ncbi.nlm.nih.gov/geo) under accession GSE152989. Results of the reconstruction can be accessed at this paper’s companion website: https://strpseq-viewer.epfl.ch/.

Code availability

Source code and templates for customized 3D-printable cryosectioning adaptor manifolds are available at https://github.com/lamanno-epfl/tomographer.

References

  1. 1.

    Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  2. 2.

    Goldman, S. L. et al. The impact of heterogeneity on single-cell sequencing. Front. Genet. 10, 1–8 (2019).

    Article 
    CAS 

    Google Scholar
     

  3. 3.

    Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 9, 1–12 (2017).

    Article 
    CAS 

    Google Scholar
     

  4. 4.

    Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  5. 5.

    Linnarsson, S. & Teichmann, S. A. Single-cell genomics: coming of age. Genome Biol. 17, 16–18 (2016).

    Article 
    CAS 

    Google Scholar
     

  6. 6.

    Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335–346 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  7. 7.

    E. Berglund et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 9, 2419 (2018).

  8. 8.

    Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, 1360–1363 (2015).


    Google Scholar
     

  9. 9.

    Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G. C. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36, 1183–1190 (2018).

    CAS 
    Article 

    Google Scholar
     

  10. 10.

    Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  11. 11.

    Eng, C. H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  12. 12.

    Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  13. 13.

    Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  14. 14.

    Salmén, F. et al. Barcoded solid-phase RNA capture for spatial transcriptomics profiling in mammalian tissue sections. Nat. Protoc. 13, 2501–2534 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  15. 15.

    Shah, S. et al. Dynamics and spatial genomics of the nascent transcriptome by intron seqFISH. Cell 174, 363–376 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  16. 16.

    Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  17. 17.

    Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8, 1–13 (2018).


    Google Scholar
     

  18. 18.

    Zechel, S., Zajac, P., Lönnerberg, P., Ibáñez, C. F. & Linnarsson, S. Topographical transcriptome mapping of the mouse medial ganglionic eminence by spatially resolved RNA-seq. Genome Biol. 15, 486 (2014).

    PubMed 

    Google Scholar
     

  19. 19.

    Moor, A. E. et al. Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus axis. Cell 175, 1156–1167 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  20. 20.

    Junker, J. P. et al. Genome-wide RNA tomography in the zebrafish embryo. Cell 159, 662–675 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  21. 21.

    Kruse, F., Junker, J. P., van Oudenaarden, A. & Bakkers, J. Tomo-seq: a method to obtain genome-wide expression data with spatial resolution. Methods Cell Biol. 135, 299–307 (2016).

  22. 22.

    Ebbing, A. et al. Spatial transcriptomics of C. elegans males and hermaphrodites identifies sex-specific differences in gene expression patterns. Dev. Cell 47, 801–813 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  23. 23.

    Lacraz, G. P. A. et al. Tomo-seq identifies SOX9 as a key regulator of cardiac fibrosis during ischemic injury. Circulation 136, 1396–1409 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  24. 24.

    Wu, C. C. et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev. Cell 36, 36–49 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  25. 25.

    Kaya, I. et al. Spatial lipidomics reveals region and long chain base specific accumulations of monosialogangliosides in amyloid plaques in familial Alzheimer’s disease mice (5xFAD) brain. ACS Chem. Neurosci. 11, 14–24 (2020). Jan.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  26. 26.

    Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019). May.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  27. 27.

    Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

    Article 

    Google Scholar
     

  28. 28.

    Cierniak, R. & Cierniak, R. Reconstruction from parallel-beam projections. In: X-Ray Computed Tomography in Biomedical Engineering 83–125 (Springer, 2011).

  29. 29.

    Herman, G. T. & Naparstek, A. Fast image reconstruction based on a radon inversion formula appropriate for rapidly collected data. SIAM J. Appl. Math. 33, 511–533 (1977).

    Article 

    Google Scholar
     

  30. 30.

    Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  31. 31.

    Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010). Oct.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  32. 32.

    Grün, D., Kester, L. & Van, A. Oudenaarden, validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637–640 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  33. 33.

    Tomassy, G. S. et al. Area-specific temporal control of corticospinal motor neuron differentiation by COUP-TFI. Proc. Natl Acad. Sci. USA 107, 3576–3581 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  34. 34.

    Weed, N. et al. Identification of genetic markers for cortical areas using a random forest classification routine and the Allen Mouse Brain Atlas. PLoS ONE 14, e0212898 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  35. 35.

    Hawrylycz, M. et al. Areal and laminar differentiation in the mouse neocortex using large scale gene expression data. Methods 50, 113–121 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  36. 36.

    Van Waes, V., Tseng, K. Y. & Steiner, H. GPR88: a putative signaling molecule predominantly expressed in the striatum: cellular localization and developmental regulation. Basal Ganglia 1, 83–89 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  37. 37.

    Lipiec, M. A. et al. TCF7L2 regulates postmitotic differentiation programmes and excitability patterns in the thalamus. Development 147, dev190181 (2020).

  38. 38.

    Gainer, H. Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. In: Zingg, H. H., Bourque, C. W. & Bichet, D. G. (eds) Vasopressin and Oxytocin. Advances in Experimental Medicine and Biology 15–27 (Springer, 1989).

  39. 39.

    Tanaka, K. F., Samuels, B. A. & Hen, R. Serotonin receptor expression along the dorsal−ventral axis of mouse hippocampus. Philos. Trans. R. Soc. B Biol. Sci. 367, 2395–2401 (2012).

    CAS 
    Article 

    Google Scholar
     

  40. 40.

    Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  41. 41.

    Hoops, D. et al. A 3D MRI-based atlas of a lizard brain. J. Comp. Neurol. 526, 2511–2547 (2018).

  42. 42.

    Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360, 881–888 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  43. 43.

    Georges, A. et al. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience 4, 45 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  44. 44.

    Norimoto, H. et al. A claustrum in reptiles and its role in slow-wave sleep. Nature 578, 413–418 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  45. 45.

    Tsafrir, D., Tsafrir, I., Zuk, O., Notterman, D. A. & Domany, E. Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21, 2301–2308 (2005).

  46. 46.

    Virolainen, S.-M., Achim, K., Peltopuro, P., Salminen, M. & Partanen, J. Transcriptional regulatory mechanisms underlying the GABAergic neuron fate in different diencephalic prosomeres. Development 139, 3795–3805 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  47. 47.

    Bell, S. et al. Disruption of GRIN2B impairs differentiation in human neurons. Stem Cell Rep. 11, 183–196 (2018).

    CAS 
    Article 

    Google Scholar
     

  48. 48.

    Garcia-Sevilla, J. A., Magnusson, T., Carlsson, A., Leban, J. & Folkers, K. Neurotensin and its amide analogue [Gln4]-neurotensin: effects on brain monoamine turnover. Naunyn Schmiedebergs Arch. Pharmacol. 305, 213–218 (1978).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  49. 49.

    Kuenzel, W. J., Medina, L., Csillag, A., Perkel, D. J. & Reiner, A. The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res. 1424, 67–101 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  50. 50.

    Kaas, J. Evolution of Nervous Systems (Elsevier, 2016).

  51. 51.

    Wang, Q. et al. Organization of the connections between claustrum and cortex in the mouse. J. Comp. Neurol. 525, 1317–1346 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  52. 52.

    Striedter, G. F. Evolution of the hippocampus in reptiles and birds. J. Comp. Neurol. 524, 496–517 (2016).

    PubMed 
    Article 

    Google Scholar
     

  53. 53.

    Cembrowski, M. S., Wang, L., Sugino, K., Shields, B. C. & Spruston, N. Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5, e14997 (2016).

  54. 54.

    Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  55. 55.

    Kuchment, P. The Radon Transform and Medical Imaging (Society for Industrial and Applied Mathematics, 2013).

    Book 

    Google Scholar
     

  56. 56.

    Okamura-Oho, Y. et al., Transcriptome tomography for brain analysis in the web-accessible anatomical space. PLoS ONE 7, e45373 (2012).

  57. 57.

    ten Donkelaar, H. J. & de Boer-van Huizen, R. Brain stem afferents to the anterior dorsal ventricular ridge in a lizard (Varanus exanthematicus). Anat. Embryol. 177, 465–475 (1988).

    Article 

    Google Scholar
     

  58. 58.

    Vinciotti, V. et al. A differentiable alternative to the lasso penalty. Preprint at https://arxiv.org/abs/1609.04985 (2016).

Download references

Acknowledgements

We thank S. Linnarsson (Karolinska Insitutet) for allowing proof-of-principle tests in his laboratory; N. Shental, B. Shalem (Open University Israel) and A. Zeisel (Technion) for stimulating discussions; M. Schuelke (Charité) for enabling the participation of C.G.S. in this project; G. Laurent for discussion and providing samples; M. Weigert and L. Talamanca for discussing our formulation; A. Jacobi for contributing lizard in situ hybridizations; and P. Gönczy, B. Deplanke and F. Naef for constructive criticism of the manuscript. This work was supported by a grant from the Swiss National Science Foundation (CRSK-3_190495) to G.L.M. G.L.M. was also supported by CZI seed network grant HCA3-0000000081 and Swiss National Science Foundation grant PZ00P3_193445.

Author information

Author notes

  1. Johanna Stergiadou

    Present address: 10x Genomics, Stockholm, Sweden

  2. Tracy M. Yamawaki

    Present address: Amgen, Inc., South San Francisco, CA, USA

  3. These authors contributed equally: Halima Hannah Schede, Christian G. Schneider.

Affiliations

  1. Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Halima Hannah Schede, Christian G. Schneider, Anurag Ranjak, Fabrice P. A. David & Gioele La Manno

  2. Charité–Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin: NeuroCure Clinical Research Center, Berlin, Germany

    Christian G. Schneider

  3. Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden

    Johanna Stergiadou, Lars E. Borm, Peter Lönnerberg & Simone Codeluppi

  4. Max Planck Institute for Brain Research, Frankfurt am Main, Germany

    Tracy M. Yamawaki & Maria Antonietta Tosches

  5. BioInformatics Competence Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

    Fabrice P. A. David

  6. Department of Biological Sciences, Columbia University, New York, NY, USA

    Maria Antonietta Tosches

Contributions

G.L.M. conceived the study design and supervised the project. G.L.M., H.H.S. and C.G.S. analyzed, annotated and interpreted the tomography data and wrote the manuscript. M.A.T. and T.M.Y. performed P. vitticeps experiments and contributed to interpreting the results. G.L.M., A.R. and H.H.S. designed and wrote the reconstruction algorithm. S.C. and L.E.B. designed the cryosectioning scheme. S.C. and J.S. performed the mouse experiments and sectioning. G.L.M. performed the sequencing. P.L. ran the bioinformatics pipeline. F.P.A.D. built the companion website. All authors critically reviewed the manuscript and approved the final version.

Corresponding author

Correspondence to
Gioele La Manno.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biotechnology thanks Mor Nitzan, Dominic Grun, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schede, H.H., Schneider, C.G., Stergiadou, J. et al. Spatial tissue profiling by imaging-free molecular tomography.
Nat Biotechnol (2021). https://doi.org/10.1038/s41587-021-00879-7

Download citation

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *