Tracking cell lineages to improve research reproducibility thumbnail

Tracking cell lineages to improve research reproducibility

Currently, 18–36% of common cell lines are estimated to be mislabeled or contaminated; in addition, cell lines often evolve divergent lineages1,2. Cell lineages can form by spontaneous or induced selection events during cell culture or when cells are genetically modified. Although funders and journals are starting to acknowledge the importance of cell line authentication, cell lineage provenance is rarely recorded or published, despite its impact on data reliability and reproducibility3,4,5.

Access options

Subscribe to Journal

Get full journal access for 1 year

$59.00

only $4.92 per issue

All prices are NET prices.

VAT will be added later in the checkout.

Tax calculation will be finalised during checkout.

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Hughes, P., Marshall, D., Reid, Y., Parkes, H. & Gelber, C. Biotechniques 43, 575, 577–578, 581–582 (2007).

  2. 2.

    Freedman, L. P., Cockburn, I. M. & Simcoe, T. S. PLoS Biol. 13, e1002165 (2015).

    Article 

    Google Scholar
     

  3. 3.

    Liu, Y. et al. Nat. Biotechnol. 37, 314–322 (2019).

    CAS 
    Article 

    Google Scholar
     

  4. 4.

    Lin, Y.-C. et al. Nat. Commun. 5, 4767 (2014).

    CAS 
    Article 

    Google Scholar
     

  5. 5.

    Ben-David, U. et al. Nature 560, 325–330 (2018).

    CAS 
    Article 

    Google Scholar
     

  6. 6.

    Boyer, S., Hérissant, L. & Sherlock, G. PLoS Genet. 17, e1009314 (2021).

    CAS 
    Article 

    Google Scholar
     

  7. 7.

    Nguyen, Ba,A. N. et al. Nature 575, 494–499 (2019).

    Article 

    Google Scholar
     

  8. 8.

    Myles, S. et al. Proc. Natl. Acad. Sci. USA 108, 3530–3535 (2011).

    CAS 
    Article 

    Google Scholar
     

  9. 9.

    Watson, C. J. et al. Science 367, 1449–1454 (2020).

    CAS 
    Article 

    Google Scholar
     

  10. 10.

    Forsberg, L. A. et al. Nat. Genet. 46, 624–628 (2014).

    CAS 
    Article 

    Google Scholar
     

  11. 11.

    Fittall, M. W. & Van Loo, P. Genome Med. 11, 20 (2019).

    Article 

    Google Scholar
     

  12. 12.

    Malm, M. et al. Sci. Rep. 10, 18996 (2020).

    CAS 
    Article 

    Google Scholar
     

  13. 13.

    Dumont, J., Euwart, D., Mei, B., Estes, S. & Kshirsagar, R. Crit. Rev. Biotechnol. 36, 1110–1122 (2016).

    CAS 
    Article 

    Google Scholar
     

  14. 14.

    Lund, R. J., Närvä, E. & Lahesmaa, R. Nat. Rev. Genet. 13, 732–744 (2012).

    CAS 
    Article 

    Google Scholar
     

  15. 15.

    Taapken, S. M. et al. Nat. Biotechnol. 29, 313–314 (2011).

    CAS 
    Article 

    Google Scholar
     

  16. 16.

    Weissbein, U. et al. iScience 11, 398–408 (2019).

    CAS 
    Article 

    Google Scholar
     

  17. 17.

    Barbaric, I. et al. Stem Cell Reports 3, 142–155 (2014).

    CAS 
    Article 

    Google Scholar
     

  18. 18.

    Bai, Q. et al. Stem Cells Dev. 24, 653–662 (2015).

    CAS 
    Article 

    Google Scholar
     

  19. 19.

    Sharma, S. V., Haber, D. A. & Settleman, J. Nat. Rev. Cancer 10, 241–253 (2010).

    CAS 
    Article 

    Google Scholar
     

  20. 20.

    Yamamoto, H. et al. Cancer Res. 68, 6913–6921 (2008).

    CAS 
    Article 

    Google Scholar
     

  21. 21.

    Komor, A. C., Badran, A. H. & Liu, D. R. Cell 168, 20–36 (2017).

    CAS 
    Article 

    Google Scholar
     

  22. 22.

    Chen, S. et al. Cell 160, 1246–1260 (2015).

    CAS 
    Article 

    Google Scholar
     

  23. 23.

    Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Nat. Biotechnol. 34, 339–344 (2016).

    CAS 
    Article 

    Google Scholar
     

  24. 24.

    Lu, C. & Sanjana, N. E. Stem Cell Res. 41, 101643 (2019).

    CAS 
    Article 

    Google Scholar
     

  25. 25.

    Kosicki, M., Tomberg, K. & Bradley, A. Nat. Biotechnol. 36, 765–771 (2018).

    CAS 
    Article 

    Google Scholar
     

  26. 26.

    Przewrocka, J., Rowan, A., Rosenthal, R., Kanu, N. & Swanton, C. Ann. Oncol. 31, 1270–1273 (2020).

    CAS 
    Article 

    Google Scholar
     

  27. 27.

    Ihry, R. J. et al. Nat. Med. 24, 939–946 (2018).

    CAS 
    Article 

    Google Scholar
     

  28. 28.

    Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. Nat. Med. 24, 927–930 (2018).

    CAS 
    Article 

    Google Scholar
     

  29. 29.

    Kimberland, M. L. et al. J. Biotechnol. 284, 91–101 (2018).

    CAS 
    Article 

    Google Scholar
     

  30. 30.

    Isasi, R., Namorado, J., Mah, N., Bultjer, N. & Kurtz, A. Stem Cell Res. 40, 101539 (2019).

    Article 

    Google Scholar
     

Download references

Acknowledgements

We thank L.M. de Buy Wenniger and T. Joseph for valuable feedback on the manuscript and K. White for assistance with graphic design. S.Z. is supported by the Jacobs Technion-Cornell Institute, the Elisha M. Friedman Postdoctoral Fellowship and FIND Genomics. S.C.G. is supported by a fellowship from the Gordon and Betty Moore Foundation/Life Sciences Research Foundation through grant GBMF2550.06. N.E.S. is supported by the National Institutes of Health (NIH) National Human Genome Research Institute (grant no. DP2HG010099), NIH National Cancer Institute (grant no. R01CA218668), NIH National Institute of General Medical Sciences (grant no. R01GM138635), Defense Advanced Research Projects Agency (grant no. D18AP00053), Sidney Kimmel Foundation, Melanoma Research Alliance, Brain and Behavior Foundation and Cancer Research Institute, and New York University and New York Genome Center startup funds.

Author information

Author notes

  1. These authors contributed equally: Sophie Zaaijer, Simon C. Groen.

Affiliations

  1. Cornell Tech, New York, NY, USA

    Sophie Zaaijer

  2. FIND Genomics, New York, NY, USA

    Sophie Zaaijer

  3. Department of Biology, New York University, New York, NY, USA

    Simon C. Groen & Neville E. Sanjana

  4. New York Genome Center, New York, NY, USA

    Neville E. Sanjana

Contributions

Conception: S.Z., S.C.G., N.E.S. Writing and figures: S.Z., S.C.G., N.E.S.

Corresponding authors

Correspondence to
Sophie Zaaijer or Simon C. Groen or Neville E. Sanjana.

Ethics declarations

Competing interests

S.Z. is a co-founder of FIND Genomics, a company that aims to improve reproducible cell-based science and develops cell lineage tracking software. N.E.S is an advisor to Vertex.

Additional information

Peer review information Nature Biotechnology thanks Chad Cowan and Johan Rockberg for their contribution to the peer review of this work.

About this article

Verify currency and authenticity via CrossMark

Read More

Leave a Reply

Your email address will not be published. Required fields are marked *